CFD Analysis of Propeller Tip Vortex Cavitation in Ship Wake Fields

Keun Woo Shin
Propeller & Aftship R&D Department, MAN Diesel & Turbo
Frederikshavn, Denmark

Poul Andersen
Department of Mechanical Engineering (MEK), Technical University of Denmark (DTU)
Kgs. Lyngby, Denmark
Introduction (1)

Tip vortex cavitation (TVC) on ship propellers

• Rudder erosion, broadband pressure pulse ← Bursting of TVC
• Environmental concern for underwater radiated noise (URN)
• Increasing need for prediction of TVC

Bursting of tip vortex cavitation on full-scale navy tanker
(Arndt et al 2015)
Cavitation simulation on ship propellers with different tip loadings

- Lowering tip loading → Preventing TVC
 → Unstable sheet cavitation and cloud cavitation → Blade surface erosion
- Inevitable TVC
 → Safe way to make sheet cavitation depart from blade surface
- Intensified TVC at max engine power

Cavitating flows on propellers with different tip loadings
(Shin and Andersen 2015)
Introduction (3)

Numerical analysis on propeller TVC

- Hybrid method (Berger et al 2016)
 → Efficient in terms of computational effort
 → Limitation in considering interactions of hull wake, propeller-induced flow, rudder

- Extensive TVC simulation in open water by viscous flow sover (Viitanen et al 2017)
 → Steady TVC trajectory

- DES of extensive TVC with hull wake and rudder
 → Alterations in TVC trajectory
 → Challenging to resolve vortex core in CFD
Test case

Propeller on military inspection vessel

- 61 m Danish navy inspection vessel
- 4-blade controllable-pitch propeller
- Large-area propeller with $\frac{A_e}{A_o}=0.76$
- Model-scale propeller with $D=0.23$ m ($D=3.3$ m at full scale)
- Towing tank test in Force Technology
- Cavitation tunnel test in SSPA including hull model
 → Weak TVC in design condition (60% MCR)
 → Extensive TVC in 100% MCR condition
CFD Setup (1)

CFD model

- Cylindrical domain around propeller and rudder
- Inner cylindrical domain around propeller with rotating motion
- 3-D from inlet to propeller plane
- 3.5° shaft axis inclination
- Axial hull wake ← non-uniform inlet velocity
- Transverse hull wake ← momentum sources 0.6·D upstream from propeller plane

![Computational domain](image1)

![Exp](image2)

![CFD model with a cross section](image3)

![Experimental setup in cavitation tunnel test](image4)
CFD Setup

- DES with curvature-corrected k-ω SST turbulence model in StarCCM+
- VOF and vapor transport equation
- Inter-phase mass transfer model
 ← Asymptotic Rayleigh-Plesset equation
- Trimmed hexahedral mesh
- 6 prism layers with thickness of 0.2 mm
 → y+ ≤ 2
- Δx = 0.3-0.6 mm on blade surface
- Refinement along blade edge
- 6.0° rotation per Δt → 0.5° per Δt

Unsteady cavitation from experiment and DES (Shin et al. 2015)
Identifying TVC trajectory

- CFD on initial grid
- Iso-surface of Q-criterion = 100,000
- Good agreement before reaching rudder
- Pitch reduction from $P_H/D = 1.07$ to 1.04
 \leftarrow Rudder disturbance
 \leftrightarrow 3% pitch increase in open-water exp (Kerwin 1976)
- Radius reduction from $D_H/D = 0.95$ to 0.8
 \leftarrow Propeller-induced flow
- Larger contraction than $D_H/D = 0.83$ (Kerwin 1976)
 \leftarrow High propeller loading of $C_{Th} = 2.0$
- Upward tilting of TVC progress from -3.5 to 0.5
 \leftarrow Upward hull wake
Adaptive Grid

Grid refinement

- Grid refinement to $\Delta x = 0.2 \text{ mm}$ along TVC trajectory
- Overset grid over rudder
- Cavitation simulation on refined grid
Cavitation simulation result

- Iso-surface of 10% vapor fraction as cavitation interface
- Good agreement in LE sheet cavitation
- Extended TVC after grid refinement
- Pronounced spiral structure of TVC
- Shorter extent of TVC than exp
- Fragment of TVC at rudder bottom
 → Repetitive grid refinements
 → Further improvement
Pressure Pulse

Pressure pulse above propeller
- Two points on hull surface near rudder headbox
- No hull surface in CFD
 → Increased by factor of 2 (Hasuike et al 2011)
- Increase of high-order pressure pulses
 ← Grid refinement
- Underestimation of high-order pressure pulses
 ← Bursting of TVC at rudder headbox

![Experimental model](image)

TVC in experiment

![Graphs showing pressure pulse](image)

Graphs showing pressure pulse

- Experiment
- DES on initial grid
- DES on refined grid

<table>
<thead>
<tr>
<th>Harmonic order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 K_p</td>
<td>3.5</td>
<td>3</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Harmonic order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 K_p</td>
<td>3.5</td>
<td>3</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

• Adaptive grid
→ Improving TVC simulation
→ Improving estimation of high-order pressure pulse

• Visualization of TVC trajectory by iso-surface of Q-criterion
→ Useful for analyzing deformed TVC trajectory

• Continuous research for further improvement
← Repetitive grid refinement
← Anisotropic turbulence model
The authors would like to express their gratitude for the support granted by the Danish Maritime Fund (Den Danske Maritime Fond)
Thank You for Your Attention!

All data provided in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.